Dependence on the structure and surface polarity of ZnS photocatalytic activities of water splitting: first-principles calculations.

نویسندگان

  • Xiangying Meng
  • Hai Xiao
  • Xiaohong Wen
  • William A Goddard
  • Song Li
  • Gaowu Qin
چکیده

It has been reported that phase structure and surface polarity largely affect the photocatalytic efficiency of semiconductor nanostructures. To understand the chemical activity of ZnS at the electronic level, we investigate electron structures and carrier transportation ability for bulk intrinsic zinc blende (ZB) and wurtzite (WZ) ZnS, as well as the reaction pathway of hydrogen generation from water splitting on Zn- and S-terminated polar surfaces. The electron structure calculations prove that the WZ phase possesses a higher reducing ability than the ZB phase. The conductivity of the bulk ZB phase surpasses that of the WZ phase at or above room temperature. As the temperature increases, the asymptotic conductivity ratio of WZ/ZB is close to the Golden Ratio, 0.62. Reaction kinetics studies indicate that Zn-terminated polar surfaces are more chemically active than S-terminated polar surfaces in the reaction of hydrogen generation from water splitting. The calculation results suggest that the first H splitting from water on Zn-terminated polar surfaces can occur with ground state electronic structures, while photo-assistance is necessary for the first H splitting on the S-terminated surfaces. Electronic triplet states calculations further show that Zn-terminated surfaces are more photosensitive than S-terminated surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface

First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...

متن کامل

Visible light photocatalytic H₂-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer.

Visible light photocatalytic H(2) production through water splitting is of great importance for its potential application in converting solar energy into chemical energy. In this study, a novel visible-light-driven photocatalyst was designed based on photoinduced interfacial charge transfer (IFCT) through surface modification of ZnS porous nanosheets by CuS. CuS/ZnS porous nanosheet photocataly...

متن کامل

First-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface

First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...

متن کامل

Photocatalytic outcomes for methylene blue degradation from CTAB mediated mesoporous ZnS, synthesized with an insoluble precursor in ethanol media

The aim of the present study is to demonstrate how mesoporous nanostructures of Zinc Sulfide (ZnS) will precipitate in an ethanol media in spite of negligible solubility of Sodium Nitrate (Na2S), which is role-played as sulfur precursor. On the following, the role of such synthesizing method on the photocatalytic behavior of ZnS mesoporous nanostructures has been investigated. Characterization ...

متن کامل

First principles studies on band structures and density of states of graphite surface oxides

Graphite oxide constitutes carbon network with oxygen atoms both on hexagonal arrangement and the edge sites. Structural and electronic properties for graphite-oxygen complexes have been explored using first-principles total-energy calculations within the local density approximation (LDA). Band structures and density of states for the propose carbon 3D models are reported. A finite energy gap and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 24  شماره 

صفحات  -

تاریخ انتشار 2013